
Attacking Systems

S ecurity vulnerabilities related to buffer overruns
account for the largest share of CERT advi-
sories, as well as high-profile worms—from the
original Internet Worm in 1987 through

Blaster’s appearance in 2003. When malicious crackers
discover a vulnerability, they devise exploits that take ad-
vantage of the vulnerability to attack a system.

The traditional approach to exploiting buffer over-
runs is stack smashing: modifying a return address saved
on the stack (the region of memory used for parame-
ters, local variables, and return address) to point to code
the attacker supplies that resides in a stack buffer at a
known location. Discussions of buffer overrun ex-
ploitation in software engineering literature typically
concentrate on stack-smashing attacks. As a result,
many software engineers and even security profession-
als seemingly assume that all buffer overrun exploits
operate in a similar manner.

During the past decade, however, hackers have de-
veloped several additional approaches to exploit buffer
overruns. The arc injection technique (sometimes re-
ferred to as return-into-libc) involves a control transfer
to code that already exists in the program’s memory
space. Various pointer subterfuge techniques change the
program’s control flow by attacking function pointers
(pointer variables whose value is used as an address in a
function call) as an alternative to the saved return ad-
dress, or modify arbitrary memory locations to create
more complex exploits by subverting data pointers.
Heap smashing allows exploitation of buffer overruns
in dynamically allocated memory, as opposed to on
the stack.

While these techniques appear esoteric, they are in

fact practical for
real-world vulnera-
bilities. The Apache/Open_SSL Slapper worm1 was the
first high-profile worm to employ heap smashing.

The wide variety of exploits published for the stack
buffer overrun that Microsoft Security Bulletin MS03-
0262 addressed (the vulnerability exploited by Blaster)
further illustrates the viability of these new techniques.
Table 1 shows a few examples.

These new approaches typically first surface in non-
traditional hacker publications. (For more discussion of
this, including references to the origins of many of these
techniques, see the “Nontraditional literature” sidebar on
page 26.) A few brief summaries in the mainstream liter-
ature,3,4 and recent books (such as Exploiting Software:
How to Break Code5 and The Shellcoder’s Handbook: Discov-
ering and Exploiting Security Holes6), also discuss some of
these techniques.

Understanding new approaches to exploitation is vital
for evaluating countermeasures’ effectiveness in address-
ing the buffer overrun problem. Failure to consider them
leads people to suggest overly simplistic and worthless
“solutions” (for example, “move all the buffers to the
heap”) or to overstate the value of useful improvements
(for instance, valuable mitigation methods such as a
nonexecutable stack, which many mistakenly view as a
silver bullet).

Exploiting buffer overruns
A buffer overrun occurs when a program attempts to read
or write beyond the end of a bounded array (also known
as a buffer). In runtime environments for languages such as
Pascal, Ada, Java, and C#, the runtime environment de-

JONATHAN

PINCUS

Microsoft
Research

BRANDON

BAKER

Microsoft

Beyond Stack Smashing:
Recent Advances in Exploiting
Buffer Overruns

20 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY

This article describes three powerful general-purpose

families of exploits for buffer overruns: arc injection, pointer

subterfuge, and heap smashing. These new techniques go

beyond the traditional “stack smashing” attack and

invalidate traditional assumptions about buffer overruns.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

tects buffer overruns and generates an
exception. In the runtime environ-
ment for C and C++, however, no
such checking is performed. Attack-
ers can often exploit the defect by
using the buffer overrun to change the
program’s execution. Such exploits
can in turn provide the infection vec-
tor for a worm or a targeted attack on
a given machine.

A buffer overrun is characterized
as a stack buffer overrun or heap buffer
overrun depending on what memory
gets overrun. C and C++ compilers
typically use the stack for local vari-
ables as well as parameters, frame
pointers, and saved return addresses.
Heaps, in this context, refer to any
dynamic memory implementations
such as the C standard library’s mal-
loc/free, C++’s new/delete,
or the Microsoft Windows APIs Heap-
Alloc/HeapFree. Figure 1 provides examples of
functions containing a stack buffer overrun (a) and heap
buffer overrun (b).

Published general-purpose exploits for buffer over-
runs typically involve two steps:

1. Change the program’s flow of control. (Pure data ex-
ploits in which the buffer happens to be adjacent to a
security-critical variable operate without changing
the program’s flow of control; these are relatively rare,
and to date no general-purpose techniques have been
published relating to them.)

2. Execute some code (potentially supplied by the at-
tacker) that operates on some data (also potentially
supplied by the attacker).

The term payload refers to the combination of code or
data that the attacker supplies to achieve a particular goal
(for example, propagating a worm). The attacker some-
times provides the payload as part of the operation that

causes the buffer overrun, but this need not be the case.
All that is required is that the payload be at a known or
discoverable location in memory at the time that the un-
expected control-flow transfer occurs.

Stack smashing
Stack smashing, a technique first described in detail in the
mid ‘90s by such hackers as AlephOne and DilDog, illus-
trates these two steps: changing the flow of control to ex-
ecute attacker-supplied code. Stack smashing relies on
the fact that most C compilers store the saved return ad-
dress on the same stack used for local variables.

To exploit the buffer overrun in f1a via a classic
stack-smashing attack, the attacker must supply a value
for arg (for example, as received from a network packet)
that contains both an executable payload and the address
at which the payload will be loaded into the program’s
memory—that is, the address of buff. This value must
be positioned at a location within arg that corresponds
to where f1a’s return address is stored on the program’s

www.computer.org/security/ � IEEE SECURITY & PRIVACY 21

AUTHOR TECHNIQUE COMMENTS

Last Stage of Delirium Unknown Original report; specific exploit was

never published

XFocus Stack smashing Apparently used by Blaster author

Litchfield Pointer subterfuge

Cigital Pointer subterfuge Unpublished

K-otic Arc injection

Authors of this article Pointer subterfuge and arc injection Unpublished

Table 1. Different exploits of Microsoft Security Bulletin MS03-026.

Figure 1. Code samples with traditional (simple) buffer overrun defects. (a) A stack
buffer overrun and (b) a heap buffer overrun.

(a)
void f1a(void * arg, size_t len) {

char buff[100];

memcpy(buff, arg, len); /* buffer overrun if len > 100 */

/* ... */

return;

}

(b)
void f1b(void * arg, size_t len) {

char * ptr = malloc(100);

if (ptr == NULL) return;

memcpy(ptr, arg, len); /* buffer overrun if len > 100 */

/* ... */

return;

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

stack when the buffer overrun occurs; depending on the
specific compiler used to compile f1a, this will typically
be somewhere around 108 bytes into arg. This new
value for the saved return address changes the program’s
control flow: when the return instruction executes, con-
trol is transferred to buff instead of returning to the call-
ing procedure.

Stack smashing is well described in mainstream liter-
ature,1 so we won’t discuss it in detail in this article.
However, two important enhancements to the standard
stack-smashing technique are often used in conjunction
with some of the other approaches, and therefore are
worth describing.

Trampolining lets an attacker apply stack smashing in
situations in which buff’s absolute address is not known
ahead of time. The key insight here is that if a program
register R contains a value relative to buff, we can trans-
fer control to buff by first transferring control to a se-
quence of instructions that indirectly transfers via R.
When an attacker can find such a sequence of instructions
(known as the trampoline) at a well-known or predictable
address, this provides a reliable mechanism for transfer-
ring control to buff. Alternatively, a pointer to attacker-
supplied data can often be found somewhere on the stack,
and so exploits often use sequences of instructions such as
pop/pop/ret to trampoline without involving regis-
ters. David Litchfield’s comparison of exploit methods
between Linux and Windows suggests that variations in
Linux distributions make trampolines a less popular ex-
ploit approach on Linux.6

Another concept first developed as a stack-smashing
enhancement is the separation between transferring the
payload and the buffer overrun operation that modifies
control flow. A situation in which this is particularly use-
ful is when the buffer being overrun is too small to con-
tain an attacker’s payload. If the attacker arranges for the
payload to be supplied in an earlier operation and it’s still
available in the program’s memory space, then he or she
can use it at the time of exploit. The sidebar briefly dis-
cusses and gives references for several such clever tech-
niques, including Murat Balaban’s approach of storing
the payload in an environment variable, which are typi-
cally accessible on Linux systems from well-known ad-
dresses near the stack base.

Arc injection
As an alternative to supplying executable code, an at-
tacker might simply be able to supply data that—when
a program’s existing code operates on it—will lead to
the desired effect. One such example occurs if the at-
tacker can supply a command line that the program
under attack will use to spawn another process; this es-
sentially allows arbitrary code execution. Arc injection
exploits are an example of this data-oriented ap-
proach—indeed, the first such published exploit al-

lowed the attacker to run an arbitrary program. The
term “arc injection” refers to how these exploits oper-
ate: the exploit just inserts a new arc (control-flow
transfer) into the program’s control-flow graph, as op-
posed to code injection-exploits such as stack smash-
ing, which also insert a new node.

A straightforward version of arc injection is to use a
stack buffer overrun to modify the saved return address
to point to a location already in the program’s address
space—more specifically, to a location within the sys-
tem function in the C standard library. The system
function takes an arbitrary command line as an argu-
ment, checks the argument’s validity, loads it into a reg-
ister R, and makes a system call to create the process.
Eliding some details, pseudocode for the system
function is:

void system(char * arg) {

check_validity(arg);

R = arg;

target:

execl(R, ...)

}

If an attacker can arrange for R to point to an attacker-
supplied string and then jump directly to the location
target, thus bypassing the validity check and assign-
ment, the system will treat the attacker-supplied string as
a command line and execute it. On many operating sys-
tems, the C standard library loads into most processes at a
well-known location, and the computing target’s ab-
solute address is straightforward.

This still leaves the attacker with the problem of
how to get R to point to an attacker-supplied string. In
many cases, this is trivial: programs routinely reuse reg-
isters, and it could just so happen that the program also
uses R in the procedure in which a buffer overrun oc-
curs. For example, if R happens to contain the address
of buff or arg in the compiled version f1 (from Fig-
ure 1), then exploiting the buffer overflow via arc injec-
tion is trivial: all the attacker needs to do is ensure that
the target’s location appears at the appropriate offset
in arg to replace the saved return address. When f1
returns, control transfers to the middle of the system
function instead. (Because system is in the C standard
library, known as libc on Unix and Linux systems,
these exploits are often referred to as return-into-libc
exploits; however, variations exist that involve neither a
return statement nor libc, so we prefer the more general
term “arc injection.”)

The straightforward arc-injection approach serves as
the basis for more complex exploits. One approach is to
arrange the data after the saved return address so that f1
first “returns” to strcpy’s location rather than its origi-
nal caller (copying the data to an appropriate location);

22 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

www.computer.org/security/ � IEEE SECURITY & PRIVACY 23

strcpy then “returns” to system. Generalizing this al-
lows for arbitrary “chaining” of function calls in arc-in-
jection exploits.

Arc-injection exploits are especially useful tech-
niques when the program being attacked has some form
of memory protection (for example, nonexecutable
stacks or the so-called W^X mechanism, which prevents
any area of memory from being simultaneously write-
able and executable). Because no attacker-supplied code
is executed, these mitigations do not prevent arc-
injection exploits.

Pointer subterfuge
Pointer subterfuge is a general term for exploits that involve
modifying a pointer’s value. At least four varieties of
pointer subterfuge exist: function-pointer clobbering,
data-pointer modification, exception-handler hijacking,
and virtual pointer (VPTR) smashing. Actual implemen-
tation of these depends to some extent on how the com-
piler lays out local variables and parameters; for the sake of
simplicity, we will ignore such complications in this article.

Function-pointer clobbering
Function-pointer clobbering is exactly what it sounds
like: modifying a function pointer to point to attacker-
supplied code. When the program executes a call via the
function pointer, the attacker’s code is executed instead of
the originally intended code. This can be an effective al-
ternative to replacing the saved return value address in sit-
uations in which a function pointer is a local variable (or a
field in a complex data type such as a C/C++ structor
class). In f3 (shown in Figure 2), for example, assum-
ing the local function variable f is laid on the stack after
buff, the attacker can use the buffer overrun to modify
f. If the attacker sets f to buff’s address (or a trampoline
to buff), the call to f will transfer control to code that
has been injected into buff.

Function-pointer clobbering combines effectively
with arc injection. In f2a, for example, the attacker
might choose to overwrite fwith a location in the sys-
tem function.

Function-pointer clobbering also combines very ef-
fectively with pointer subterfuge. A popular exploit on
Unix and Linux systems uses an arbitrary pointer write to
clobber pointers in the fnlist structure (typically ma-
nipulated by the atexit call); these functions are in-
voked as a process exits.

Although the earlier example is in terms of a stack
buffer overrun, function-pointer clobbering can also be
used on overruns embedded in heap structs or objects
that contain embedded function pointers.

Function-pointer clobbering is an especially useful
technique when the program being attacked uses some
form of mitigation technique that prevents modification
of the saved return address (for example, if a mechanism

such as StackGuard9 protects it). Because the saved return
address is not overwritten, these mitigations do not pre-
vent function-pointer clobbering exploits.

Data-pointer modification
If an address is used as a target for a subsequent assign-
ment, controlling the address lets the attacker modify
other memory locations, a technique known as an arbi-
trary memory write. In f4, for example, the buffer overrun
of buff also modifies ptr and val values; this means
that the attacker can use the assignment *ptr = val to
set any four bytes of memory to a value of his or her
choice. Data-pointer modification is thus useful as a
building block in more complex exploits. (Although this
example is in terms of a stack buffer overrun, an exploit
can also use data-pointer modification on overruns em-
bedded in heap structs or objects that also contain em-
bedded pointers.)

A common use of data-pointer modification is in
combination with function-pointer clobbering. In f4 in
Figure 2, because variable f is not a local variable, there is
no way to clobber it as part of the buffer overrun. How-
ever, if the attacker knows f’s address, then the arbitrary
pointer write can be used to change f’s value, thus leading

Figure 2. Pointer variables let the attacker use different exploit
techniques. (a) A buffer overrun where the attacker can modify a
function pointer. (b) A buffer overrun where an attacker can modify
a data pointer, thus indirectly modifying a function pointer.

(a)
void f2a(void * arg, size_t len) {

char buff[100];

void (*f)() = ...;

memcpy(buff, arg, len); /* buffer overrun! */

f();

/* ... */

return;

}

(b)
void f2b(void * arg, size_t len) {

char buff[100];

long val = ...;

long *ptr = ...;

extern void (*f)();

memcpy(buff, arg, len); /* buffer overrun! */

*ptr = val;

f();

/* ... */

return;

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

to the same effect as a function-pointer clobber.
Another use of data-pointer modification is to mod-

ify some location used in future security-critical deci-
sions. An exploit published by Litchfield for the MS03-
026 vulnerability7 is an excellent example of how
pointer subterfuge can combine with a traditional stack-
smashing approach.

Figure 3 presents a simplified version of a vulnerable
program’s code. The stack_cookie and global
_magic_numbervariables are explicit (albeit simplified)
representations of some additional checks introduced by
the Microsoft Visual C++ 7.0 compiler. For the purposes
of this section, it is enough to note that the goal of these
code fragments is to prevent execution from reaching
program point P if a buffer overrun has modified the
saved return address, which on an x86 machine is located
on the stack directly after the stack_cookie variable.

By taking advantage of the buffer overrun at P1,
Litchfield’s exploit first performs the following primitive
operations:

• stores a sequence of instructions in the local variable
buff;

• modifies the pointer variable ptr to point to the global
variable global_magic_number;

• sets i to a new value val;
• sets stack_cookie to the same value val; and
• modifies the saved return address to contain the address

of a trampoline that will indirectly transfer execution to
buff.

When execution reaches P2, the assignment modi-

fies the value in the global variable
global_magic_number, setting
it to val. As a result, the test at P3
fails to detect the buffer overrun. Ex-
ecution thus reaches P4, where the
return instruction results in a con-
trol-flow transfer to the saved return
value; the trampoline in turn trans-
fers control to the instructions that
have been stored in buff, and the
exploit is successful.

As this example illustrates, data-
pointer modification is an especially
useful technique when the program
being attacked uses a mitigation tech-
nique that prevents more straightfor-
ward exploits.

Exception-
handler hijacking
Several variations of exploit tech-
niques target the Microsoft Win-

dows Structured Exception Handling
(SEH) mechanism. When an exception (such as an ac-
cess violation) is generated, Windows examines a
linked list of exception handlers (typically registered by
a program as it starts up) and invokes one (or more) of
them via a function pointer stored in the list entry. Be-
cause the list entries are stored on the stack, it is possible
to replace the exception-handler function pointer via
buffer overflow (a standard example of function-
pointer clobbering), thus allowing an attacker to trans-
fer control to an arbitrary location—typically a tram-
poline to code injected by the attacker. Versions of
Windows starting with Windows Server 2003 perform
some validity checking of the exception handlers that
limit the feasibility of this straightforward attack.

An alternative to clobbering an individual function
pointer is to replace the field of the thread environment
block (a per-thread data structure maintained by the
Windows operating system) that points to the list of reg-
istered exception handlers. The attacker simply needs to
“mock up” an apparently valid list entry as part of the
payload and, using an arbitrary pointer write, modify the
“first exception handler” field. Although recent versions
of Windows do some validity checking for the list entries,
Litchfield has demonstrated successful exploits in many of
these cases.

As this discussion implies, the SEH mechanism has
been repeatedly revised in response to these attacks; all
currently published vulnerabilities are expected to be
fixed in Windows XP Service Pack 2. However, pub-
lished exploits continue to be feasible on older versions of
the operating system, and it is, of course, possible that
new exploits will be discovered for SEH’s latest version.

24 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

Figure 3. A simplified example of vulnerable code with compiler-inserted checks for
buffer overruns. Pointer subterfuge attacks can be used to defeat compiler-inserted
checks for buffer overruns, as this simplified example of vulnerable code illustrates.

extern int global_magic_number;

void vulnerable(char *input, size_t max_length) {

char buff[MAX_SIZE];

int *ptr;

int i;

int stack_cookie;

P0: stack_cookie = global_magic_number;

P1: memcpy(buff, input, max_length); // buffer overrun!

...

P2: *ptr = i;

P3: if (stack_cookie != global_magic_number)

// buffer overrun has occurred!

exit();

P4: return;

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

While SEH is a Windows-specific concept, there
could be analogous techniques on other operating sys-
tems. On Linux, for example, replacing an entry in the
fnlist (discussed in the “Function-pointer clobber-
ing” section) has some strong similarities to this approach.

Exception-handler hijacking is an especially useful
technique when the program being attacked uses a miti-
gation technique that prevents more straightforward ex-
ploits of stack buffer overruns. In many cases, by trigger-
ing an unexpected exception, the attacker might be able
to bypass the mitigation.

VPTR smashing
Most C++ compilers implement virtual functions via a
virtual function table (VTBL) associated with each class; the
VTBL is an array of function pointers that is used at run-
time to implement dynamic dispatch. Individual objects,
in turn, point to the appropriate VTBL via a virtual pointer
(VPTR) stored as part of the object’s header. Replacing
an object’s VPTR with a pointer to an attacker-supplied
VTBL (which we will refer to as a “mock VTBL”) allows
the attacker to transfer control when the next virtual
function is invoked.

VPTR smashing attacks can apply both to stack buffer
overruns and heap buffer overruns, and can be used in
conjunction with code injection or arc injection; Figure
4 illustrates this with a heap buffer overrun and a code in-
jection attack.

In Figure 4, assume that the class C has a virtual func-
tion vf; further assume that the object for ptr is allocated
directly after buff. In this case, the attacker has presum-
ably transferred the payload (mock VTBL and code to be
executed) in an earlier operation, and uses the buffer over-
run to modify ptr’s VTBL. For sufficiently large stack
buffer overruns, the mock VTBL and injected code can
also be provided as part of the buffer overrun operation.

For a heap buffer overrun, it initially seems that the at-
tacker must guess the type of object allocated directly
after the buffer that has been overrun; while this is trivial
in the example in Figure 4 it could be far more difficult in
real-world situations. However, overwriting the VPTR
to point to an attacker-supplied mock VTBL (in which
each entry points to the attacker’s injected code) removes
this requirement.

VPTR smashing has not yet been used widely in prac-
tice, but it is a potentially useful technique when the pro-
gram being attacked uses a mitigation technique that pre-
vents heap smashing.

Heap smashing
Until very recently, experts believed that only stack
buffers were vulnerable to exploitation. Various pointer-
subterfuge exploits started to challenge this assumption,
and led to the development of heap-specific attacks that
have since become known as heap smashing.

The key insight behind heap smashing is to exploit
the implementation of the dynamic memory allocator
by violating some assumed invariants. (Published source
code for the dynamic memory allocator makes explana-
tion easier, but is not needed in practice, so these tech-
niques apply equally well on closed-source systems.)
Many allocators, for example, keep headers for each
heap block chained together in doubly linked lists of al-
located and freed blocks, and update these during opera-
tions such as freeing a memory block. If there are three
adjacent memory blocks X, Y, and Z, an overrun of a
buffer in X that corrupts the pointers in Y ’s header can
thus lead to modification of an arbitrary memory loca-
tion when X, Y, or Z is freed. In many cases, the attacker
can also control the value being put into that location,
thus accomplishing an arbitrary memory write, which
leads to the exploitation possibilities discussed in the
“Data-pointer modification” section. In practice, heap
smashing is thus typically coupled with function-pointer
clobbering.

Three factors complicate heap-smashing exploits.
Most obviously, the attacker typically does not know the
heap block’s location ahead of time, and standard tram-
polining approaches are typically not effective. In many
cases, it is somewhat difficult to predict when the heap-
free operation will occur, which could mean that the
payload is no longer available at the time that the call via
the clobbered function pointer occurs. Finally, in some
situations (especially with multithreaded programs), it is
difficult to predict whether the next block has been allo-
cated at the time the overrun occurs.

Surprisingly enough, however, these are no longer
significant roadblocks for exploitation of many heap
buffer overruns. Attackers typically work around them by
transferring the payload to an easy-to-find location as
part of a separate operation (a technique first developed as
a stack-smashing enhancement). There are typically
enough such locations available that attackers can choose
a location that will still be available at the time the call oc-
curs. For cases where it is difficult to predict the next
block, attackers can attempt to influence the size and

www.computer.org/security/ � IEEE SECURITY & PRIVACY 25

Figure 4. A buffer overrun in C++ code, exploitable both by VPTR
smashing and heap smashing.

void f4(void * arg, size_t len) {

char *buff = new char[100];

C *ptr = new C;

memcpy(buff, arg, len); /* buffer overrun! */

ptr->vf(); // call to a virtual function

return;

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

order of heap operations to position the heap block of in-
terest at a known location and to disambiguate the fol-
lowing blocks’ behavior.

As of early 2004, the clear explanations in The Shellcoder’s
Handbook6 and elsewhere imply that heap buffer overrun
exploitation is almost as cookbook of a process as stack
buffer exploitation. Just as the original stack-smashing tech-

nique has been repeatedly extended, researchers such as
Matt Conover and Oded Horovitz are currently investigat-
ing new exploit approaches that build on heap smashing.8

G iven the continued existence of large amounts of C
and C++ code in system-critical code (operating

26 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

Although very little work has been published on exploitation

in traditional conferences and journals, there is a lively

parallel world—where the work is often of surprisingly high

quality. This important resource is often left untapped by

security researchers (although the references cited in the main

article text in turn contain some useful references to this nontra-

ditional literature).

The exploit techniques discussed in the main article come from

four major threads of nontraditional literature, with a fair amount

of crossover between them: Web sites and advisories from security

companies and individual researchers; mailing lists, most notably

the Security Focus VulnWatch and VulnDev mailing lists; hacker

conferences such as Black Hat (www.blackhat.org); and Phrack

magazine (www.phrack.org).

Stack smashing
AlephOne’s 1996 Smashing the Stack for Fun and Profit (in Phrack

49 at www.phrack.org/show.php?p=49&a=14) and DilDog’s The

Tao of Windows Buffer Overruns (www.cultdeadcow.com/cDc_files/

cDc-351/) are classic introductions to stack-smashing techniques

and trampolining. Murat Balaban (www.enderunix.org/docs/eng/

bof-eng.txt) first described the technique of storing the executable

code in an environment variable. eEye’s Blaster Worm Analysis

(www.eeye.com/html/Research/Advisories/AL20030811.html) dis-

cusses the Blaster worm in detail.

Arc injection
Return-into-libc attacks were pioneered by Solar Designer in 1997

(www.securityfocus.com/archive/1/7480) and refined by Rafal

Wojtczuk (1998’s Defeating Solar Designer’s Non-executable Stack

Patch at www.insecure.org/sploits/non-executable.stack.problems.

html, and 2001’s The Advanced return-into-lib(c) Exploits in Phrack

58 at www.phrack.org/show.php?p=58&a=4). K-otic describes a

return-into-libc exploit for MS03-026 at www.k-otik.com/exploits/

11.07.rpcexec.c.php.

Pointer subterfuge
Pointer subterfuge attacks were developed largely in response to

the introduction of stack canary checking in StackGuard and other

products. Matt Conover’s 1999 paper on heap exploitation

(www.w00w00.org/files/articles/heaptut.txt) discusses this and

has several examples of pointer subterfuge attacks; he cites Tim

Newsham’s earlier mail suggesting this approach. Bulba and

Kil3r’s Bypassing Stackguard and Stackshield (Phrack 56 at

www.phrack.org/show.php?p=56&a=5) and Gerardo Richarte’s

similarly titled Bypassing the Stackguard and Stackshield Protection

(www2.corest.com/common/showdoc.php?idx=242&idxseccion

=11) are two early examples here. David Litchfield discusses

exception-handler hijacking in his 2003 paper on Variations in

Exploit Methods Between Linux and Windows (www.nextgenss.com/

papers/exploitvariation.pdf); his Defeating the Stack Buffer Overflow

Prevention Mechanism of Microsoft Windows 2003 Server

(www.nextgenss.com/papers/defeating-w2k3-stack-protection.

pdf) discusses both pointer subterfuge in general and exception

handling hijacking in particular. Rix described Smashing C++

VPTRs in Phrack 56 (at www.phrack.org/show.php?p=56&a=8).

Heap smashing
Conover’s 1999 paper (mentioned above) first described heap

exploitation techniques, although he noted “... heap-based

overflows are not new.” A pair of articles in Phrack 57 (Michel

Kaempf’s Vudo Malloc Tricks at www.phrack.org/show.php?p

=57&a=8 and Anonymous’ Once Upon a Free ... at www.phrack.

org/show.php?p=57&a=9) introduced heap smashing in mid

2001. Halvar Flake’s Third Generation Exploits (www.blackhat.

com/presentations/win-usa-02/halvarflake-winsec02.ppt) first

applied this to Windows; Litchfield’s Non-stack Based Exploitation

of Buffer Overrun Vulnerabilities on Windows NT/2000/XP

(www.nextgenss.com/papers/non-stack-bo-windows.pdf)

expands on these concepts.

JP’s Advanced Doug Lea’s Malloc Exploits (Phrack 61 at

www.phrack.org/show.php?p=61&a=6) elegantly analyzes heap-

based exploits in terms of primitive operations and covers several

techniques for extracting information from the target program to

make exploits more reliable. Pheonlit’s description of exploiting a

Cisco IOS heap overrun (www.phenoelit.de/ultimaratio/index.

html) shows how attackers can work around partial defenses.

Frédéric Pierrot and Peter Szor of the Symantec Security Response

Center analyzed the Slapper worm’s use of the heap-smashing

technique (securityresponse.symantec.com/avcenter/reference/

analysis.slapper.worm.pdf). Dave Aitel’s excellent two-part series

Exploiting the MSRPC Heap Overflow (www.immunitysec.com/

papers/msrpcheap.pdf) gives a good feel for now hackers

develop exploits in practice, and also illustrates the technique of

providing the “payload” in an operation distinct from the buffer

overrun itself.

Nontraditional literature on buffer overruns

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

Attacking Systems

systems, databases, mail and Web servers, and so on),
buffer overruns are likely to continue to be an important
source of potential vulnerabilities. Security researchers
continue to devise new mitigation approaches to pre-
venting exploitation of these vulnerabilities, as well as to
investigate promising combinations10; however, attackers
have proven equally adept at inventing new exploit tech-
niques to defeat promising mitigations.

An important point about the new exploitation
techniques we described in this article is that they in-
validate traditional assumptions about buffer overrun
exploits.

• Arc injection invalidates the assumption that all exploits
rely on injecting code.

• Pointer subterfuge invalidates the assumption that all
exploits rely on overwriting the saved return address.

• Heap smashing and pointer subterfuge both invalidate
the assumption that only stack buffers are vulnerable.

In addition to taking these specific techniques into ac-
count when analyzing potential solutions, researchers must
also consider what assumptions the solutions make. Simi-
larly, systems designers must consider exploit possibilities as
they introduce new functionality in order to avoid intro-
ducing new avenues of exploitation (for example, C++ vir-
tual functions, structured exception handling, or atexit).
At least in the short term, the “arms race” appears likely to
continue: attackers will find ways to invalidate assumptions,
and thus create new exploit techniques.

References
1. CERT Advisory CA-2002-27 Apache/mod_ssl Worm,

CERT Coordination Ctr., 2002; www.cert.org/
advisories/CA-2002-27.html.

2. Buffer Overrun in RPC Interface Could Allow Code Execution,
Microsoft Security Bulletin MS03-0262003; www.
microsoft.com/technet/security/bulletin/MS03-026.mspx.

3. C. Cowan et al., “Buffer Overflows: Attacks and Defenses
for the Vulnerability of the Decade,” DARPA Information
Survivability Conf. and Expo (DISCEX ‘00), 2000; www.
immunix.com/pdfs/discex00.pdf

4. J. Wilander and M. Kamkar, “A Comparison of Publicly
Available Tools for Dynamic Buffer Overflow Prevention,”
Proc. 10th Network and Distributed System Security Symp.
(NDSS ‘03), 2003; www.ida.liu.se/~johwi/research
_publications/paper_ndss2003_john_wilander.pdf.

5. G. Hoglund and G. McGraw, Exploiting Software: How to
Break Code, Addison-Wesley, 2004.

6. J. Koziol et al., The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes, John Wiley & Sons, 2004.

7. D. Litchfield, Defeating the Stack Buffer Overflow Preven-
tion Mechanism of Microsoft Windows 2003 Server, 2003;
www.nextgenss.com/papers/defeating-w2k3-stack
-protection.pdf.

8. M. Conover and O. Horovitz, “Reliable Windows Heap
Exploits,” Proc. CanSecWest, 2004; http://cansecwest.
com/csw04/csw04-Oded+Connover.ppt.

9. C. Cowan et al., “StackGuard: Automatic Adaptive Detec-
tion and Prevention of Buffer overrun attacks,” Proc. Usenix
Security Symp., Usenix Assoc., 1998; www.immunix.
com/pdfs/usenixsc98.pdf.

10. J. Pincus and B. Baker, Mitigations for Low-Level Coding
Vulnerabilities: Incomparability and Mitigations; http://
research.microsoft.com/users/jpincus/mitigations.pdf.

Jonathan Pincus is a senior researcher at Microsoft Research. His
research interests include security, privacy, and reliability of soft-
ware-based systems. He received his MS from the University of
California at Berkeley, and his AB from Harvard University. Con-
tact him at jpincus@microsoft.com.

Brandon Baker is a security development engineer and red-team
lead in the Microsoft Windows Security group. His research inter-
ests include security architecture and penetration testing. He
received his BSc in computer science from Texas A&M University.
Contact him at babaker@microsoft.com.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 27

Any products your peers should know
about? Write a review for IEEE Pervasive
Computing, and tell us why you were
impressed. Our New Products department
features reviews of the latest components,
devices, tools, and other ubiquitous com-
puting gadgets on the market.

Send your reviews and
recommendations to

pvcproducts@computer.org
today!

Tried
any
new

gadgets
lately

?

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

