
Too much PIE is bad for performance
Mathias Payermathias.payer@nebelwelt.net

Department of Computer Science, ETH Zurich

Abstract
Compiling an application as a Position Independent Exe-
cutable (PIE) enables Address Space Layout Randomiza-
tion to protect the application from security attacks by map-
ping the executable at a random memory location. Neverthe-
less most applications on current x86 Linux distributions are
mapped to a static address for performance reasons.

This paper evaluates the overhead and side-effects of PIE
using the SPEC CPU2006 benchmarks on an Intel Core i7
CPU with a recent Ubuntu distribution. Our analysis shows
that the overhead for PIE on 32bit x86 is up to 26% for
some benchmarks with an (arithmetic) average of 10% and a
geometric mean of 9.4%. We identify the increased register
pressure as the source for most of the overhead on x86.

Categories and Subject Descriptors D.4.6 [Operating
Systems]: Security and Protection; D.3.4 [Programming
Languages]: Processors — Run-time environments; D.3.4
[Programming Languages]: Processors — Code generation

General Terms Performance, Security, Optimization

Keywords Position Independent Executable (PIE), Linux,
ASLR, Optimization, Security

1. Introduction
Software security is an important problem and current com-
pilers and systems include different protection techniques to
make exploitation harder. Protection mechanisms like Data
Execution Prevention (DEP)1 [15] that enforces either W⊕X
pages, a non-executable stack, stack canaries (ProPolice [6]),
and Address Space Layout Randomization (ASLR [2, 3, 8])
enable probabilistic protection from code injection and code
reuse attacks.

Return-into-libc [7, 12], Return oriented programming
(ROP) [10] and jump oriented programming (JOP) [4] are
three modern attack techniques that no longer rely on in-
jected executable code but reuse available application code.
Both return-into-libc and ROP rely on an unchecked appli-
cation stack, i.e., return addresses on the stack are not ver-
ified. Modern runtime guards (e.g., libdetox [9]) use a sep-
arate shadow stack to check return addresses and therefore
prohibit return-into-libc and ROP based attacks. JOP based
attacks are more complicated to run and also more compli-

1 DEP uses the executable bit for pages in modern memory management
units to enable non-executable data regions. DEP ensures that only code
pages are executable. A stronger guarantee is W ⊕X which ensures that a
page is either writeable or executable but not both. Linux uses an W ⊕ X
approach called Exec Shield [15].

cated to protect against. A runtime system either checks the
integrity of every dynamic control flow instruction [1, 5] or
the compiler ensures that no open dynamic control flow in-
structions (e.g., jmp *%eax; an indirect jump through the
eax register) are available in the compiled source. Both ROP
and JOP rely on known addresses for code locations (gad-
gets) that are then concatenated in an actual exploit.

Address Space Layout Randomization (ASLR) [2, 3, 8]
randomizes all memory regions of an application (e.g., dy-
namically loaded libraries, heap, and stack). A potential ex-
ploit can no longer rely on constant addresses for, e.g., li-
brary routines and gadgets. A drawback of this approach is
that the address space for 32bit binaries is small and only a
few bits can be randomized which opens the possibility of
probabilistic attacks [13], e.g., the Linux ASLR implemen-
tation [8] only offers 16bit of entropy (according to [13]).

The Linux ASLR implementation [8] on x86 is limited if
the application itself is not compiled as a Position Indepen-
dent Executable (PIE). In particular non-PIE ASLR applica-
tions are mapped to the constant address 0x0804800 (this in-
cludes the data section, bss section, code section, GOT sec-
tion, and PLT section). An application can be compiled into
a PIE which can then be loaded at random addresses. Linux
distributions like Ubuntu only compile a small set of binaries
(27 for Ubuntu 11.10) as PIE due to a “5-10%” performance
penalty according to the Ubuntu Security wiki [14]. All other
programs are compiled without PIE. According to [11] the
overhead for PIE in I/O based benchmarks is between 0%
and 10%. Unfortunately we were unable to reproduce the re-
sults of [11] for bzip2 (0% overhead on their system) on our
system.

PIE protects applications probabilistically from ROP and
JOP. The current PIE implementation for GCC uses an addi-
tional register to hold the base pointer of the current module.
The PIE compilation scheme increases register pressure for
architectures with a small amount of registers. E.g., x86 has
8 registers whereas 6 or 7 (EAX, EBX, ECX, EDX, ESI,
EDI, and depending on the compilation flags, EBP) registers
can be used to hold program values. If the PIE flag is used
then the number of available registers is reduced to 5 or 6 at
any point in the program.

This paper evaluates the effective overhead for PIE bi-
naries in different configurations using the SPEC CPU2006
benchmarks. The evaluation shows that the overhead is non-
negligible and varies between 0.37% and 26% with a geo-
metric mean of 9.4%.

Technical Report 766, ETH Zurich, Switzerland 1 2012/6/14

mailto:mathias.payer@nebelwelt.net


Benchmark -O3 [s] -O3 -fPIE [s] Ovhd. [%]
400.perlbench 369 463 25.47%
401.bzip2 610 713 16.89%
403.gcc 308 334 8.44%
429.mcf 254 262 3.15%
445.gobmk 479 550 14.82%
456.hmmer 554 584 5.42%
458.sjeng 533 671 25.89%
462.libquantum 560 624 11.43%
464.h264ref 760 829 9.08%
471.omnetpp 298 323 8.39%
473.astar 472 492 4.24%
483.xalancbmk 242 259 7.02%
433.milc 394 400 1.52%
444.namd 536 538 0.37%
447.dealII 426 431 1.17%
450.soplex 258 270 4.65%
453.povray 244 290 18.85%
470.lbm 327 328 0.31%
482.sphinx3 520 607 16.73%
Average 429 472 10.12%
Geo. mean 405 443 9.40%

Table 1: Performance of SPEC CPU2006 for -O3 and relative
overhead for PIE.

2. Evaluation
This section shows the evaluation for the PIE feature of
GCC that produces position independent executables. The
PIE feature enables ASLR for binaries. The evaluation uses
GCC version 4.5.2-8ubuntu on Ubuntu 11.04 with Linux
kernel version 2.6.38-15-generic and glibc version 2.13.
The evaluation system uses a Intel Core i7 dual core CPU
clocked at 3.07 GHz with active SMP and 12GB RAM.
The evaluation uses all benchmarks of the SPEC CPU2006
v1.01 benchmark suite that compile using recent GCC ver-
sions. The evaluation uses two different compilation set-
tings. The benchmarks are compiled with either -O3 or -O2.
The benchmarks are executed using the runspec program
and the configuration uses 3 runs. The CPU2006 logs are
available on request.

2.1 PIE and -O3

Table 1 compares SPEC CPU2006 performance for -O3 (the
most aggressive optimization level of GCC)with and with-
out -fPIE. Wee see that PIE executables are never faster
than non-PIE executables and the overhead varies between
0.37% and 26% depending on the benchmark. The bench-
marks can be grouped into 4 groups: negligible overhead be-
tween 0% and 2% (4 benchmarks), small overhead up to 5%
(3 benchmarks), medium overhead between 5% and 10% (5
benchmarks), and high overhead with more than 10% per-
formance penalty(7 benchmarks).

Benchmark -O2 [s] -O2 -fPIE [s] Ovhd. [%]
400.perlbench 378 462 22.22%
401.bzip2 635 768 20.94%
403.gcc 314 342 8.92%
429.mcf 264 270 2.27%
445.gobmk 478 553 15.69%
456.hmmer 556 586 5.40%
458.sjeng 561 693 23.53%
462.libquantum 570 622 9.12%
464.h264ref 782 859 9.85%
471.omnetpp 308 340 10.39%
473.astar 501 540 7.78%
483.xalancbmk 257 283 10.12%
433.milc 449 454 1.11%
444.namd 537 537 0.00%
447.dealII 481 492 2.29%
450.soplex 263 275 4.56%
453.povray 248 292 17.74%
470.lbm 329 332 0.91%
482.sphinx3 524 610 16.41%
Average 444 490 10.37%
Geo. mean 420 460 9.72%

Table 2: Performance of SPEC CPU2006 for -O2 and relative
overhead for PIE.

The benchmarks with high overhead either have a highly
irregular workload with a large amount of indirect con-
trol flow transfers (400.perlbench and 458.sjeng) or process
streams of data (401.bzip2, 453.povray, and 482.sphinx3).
These workloads have a high register pressure and the re-
duced set of registers is the source for the high overhead.

The average overhead for PIE (when compiled with O3)
is 10% and the geometric mean is 9.4%. This overall non-
negligible overhead is the reason why not all applications
are compiled with PIE. The Ubuntu distribution chooses
performance over the increased security benefit that PIE
offers.

2.2 PIE and -O2

Table 2 shows a comparison between binaries with PIE and
without PIE on the -O2 GCC optimization level. The results
are comparable to -O3 with an average overhead of 10% and
a geometric mean of 9.7% for PIE.

2.3 PIE comparison

Figure 1 compares the SPEC CPU2006 results for -O2 and
-O3. The benchmarks are ordered by descending overhead
for -O3. The overhead for both -O2 and -O3 is comparable
for all benchmarks.

2.4 PIE and x64

x64, the 64bit extension of x86 does not have the same lim-
itations as 32bit x86. First of all, x64 doubles the number of

Technical Report 766, ETH Zurich, Switzerland 2 2012/6/14



458.sjeng
400.perlbench
453.povray
401.bzip2
482.sphinx3
445.gobm

k
462.libquantum
464.h264ref
403.gcc
471.om

netpp
483.xalancbm

k
456.hm

m
er

450.soplex
473.astar
429.m

cf
433.m

ilc
447.dealII
444.nam

d
470.lbm
A

verage
G

eo. M
ean

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Overhead for -fPIE

-O3 -fPIE
-O2 -fPIE

SPEC CPU2006 benchmark

O
ve

rh
e

a
d

Figure 1: Comparison of the overhead for PIE between -O2 and -O3.

registers: x86 offers 16 total registers of which 15 registers
can be used for computation. Secondly, x64 uses an address-
ing mode that is relative to the instruction pointer, thereby
removing the need to use an extra register for PIE.

A quick evaluation for x64 reports an average overhead
of 3.61% and a geometric mean of 2.34% for an -O3 opti-
mization level on the same system using the “test” dataset of
SPEC CPU2006.

3. Conclusion
Applications that are compiled as Position Independent Exe-
cutable (PIE) increase the protection from code-reuse attacks
like ROP and JOP by enabling ASLR for the application im-
age as well (and not only for shared libraries and stack). On
architectures with a small number of registers like 32bit x86
the increased security comes at a performance price of up to
26% for individual benchmarks with an average of 10% and
a geometric mean of 9.4% due to increased register pressure.

Current Linux distributions do not tolerate the overhead
for ’fat’ PIE applications and trade (increased) security for
performance. The high overhead for PIE calls for alternative
security solutions that enable ROP and JOP protection at a
lower cost (both for individual benchmarks as well as overall
performance).

Acknowledgments
My thanks go to Per Larsen and Andrei Homescu for feed-
back and discussions about PIE and all the different binary
formats. I would also like to thank Per Larsen for pushing me
to finally publish my measurements and results as a technical
report.

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In CCS’05: Proc. 12th Conf. Computer and
Communications Security (2005), pp. 340–353.

[2] BHATKAR, E., DUVARNEY, D. C., AND SEKAR, R. Address obfus-
cation: an efficient approach to combat a broad range of memory error
exploits. In SSYM’03: Proc. 12th USENIX Security Symp. (2003),
pp. 105–120.

[3] BHATKAR, S., BHATKAR, E., SEKAR, R., AND DUVARNEY, D. C.
Efficient techniques for comprehensive protection from memory error
exploits. In SSYM’05: Proc. 14th USENIX Security Symp. (2005),
pp. 255–270.

[4] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z. Jump-
oriented programming: a new class of code-reuse attack. In ASI-
ACCS’11: Proc. 6th ACM Symp. on Information, Computer and Com-
munications Security (2011), pp. 30–40.

[5] ERLINGSSON, Ú., ABADI, M., VRABLE, M., BUDIU, M., AND
NECULA, G. C. XFI: Software guards for system address spaces.
In OSDI’06 (2006), pp. 75–88.

[6] HIROAKI, E., AND KUNIKAZU, Y. ProPolice: Improved stack-
smashing attack detection. IPSJ SIG Notes (2001), 181–188.

[7] NERGAL. The advanced return-into-lib(c) exploits. Phrack 11, 58
(Nov. 2007), http://phrack.com/issues.html?issue=67&id=
8.

[8] PAX-TEAM. PaX ASLR (Address Space Layout Randomization).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[9] PAYER, M., AND GROSS, T. R. Fine-grained user-space security
through virtualization. In VEE’11: Proc. 7th Int’l Conf. Virtual Ex-
ecution Environments (2011), pp. 157–168.

[10] PINCUS, J., AND BAKER, B. Beyond stack smashing: Recent ad-
vances in exploiting buffer overruns. IEEE Security and Privacy 2
(2004), 20–27.

[11] ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND BRUSCHI, D.
Surgically returning to randomized lib(c). In ACSAC (2009), IEEE
Computer Society, pp. 60–69.

[12] SHACHAM, H. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In CCS’07: Proc. 14th
Conf. on Computer and Communications Security (2007), pp. 552–
561.

[13] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU,
N., AND BONEH, D. On the effectiveness of address-space random-
ization. In CCS’04: Proc. 11th Conf. Computer and Communications
Security (2004), pp. 298–307.

[14] UBUNTU. List of programs built with PIE. https://wiki.ubuntu.
com/Security/Features#pie, May 2012.

[15] VAN DE VEN, A., AND MOLNAR, I. Exec shield. https://www.
redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf, 2004.

Technical Report 766, ETH Zurich, Switzerland 3 2012/6/14

http://phrack.com/issues.html?issue=67&id=8
http://phrack.com/issues.html?issue=67&id=8
http://pax.grsecurity.net/docs/aslr.txt
https://wiki.ubuntu.com/Security/Features#pie
https://wiki.ubuntu.com/Security/Features#pie
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

	Introduction
	Evaluation
	PIE and -O3
	PIE and -O2
	PIE comparison
	PIE and x64

	Conclusion

