
Transparent Runtime Shadow Stack:
Protection against malicious return address modifications

Saravanan Sinnadurai†, Qin Zhao∗, and Weng-Fai Wong∗†

†Department of Computer Science,
National University of Singapore, Singapore 117543

∗Singapore-MIT Alliance,
Singapore

{saravan1|zhaoqin|wongwf}@comp.nus.edu.sg

Abstract

Exploitation of buffer overflow vulnerabilities constitutes a significant portion of security attacks in
computer systems. One of the most common types of buffer overflow attacks is the hijacking of the
program counter by overwriting function return addresses in the process’ stack so as to redirect the pro-
gram’s control flow to some malicious code injected into the process’ memory. Previous solutions to
this problem are based either on hardware or the compiler. The former requires special hardware while
the latter requires the source code of the software. In this paper we introduce the use of a Transparent
RUntime Shadow Stack (TRUSS) to protect against function return address modification. Our proposed
scheme is built on top of DynamoRIO, a dynamic binary rewriting framework. DynamoRIO is imple-
mented on both Windows and Linux. Hence, our scheme is able to protect applications on both operating
systems. We have successfully tested our implementation on the SPECINT 2000 benchmark programs
on both Windows and Linux, John Wilander’s “Dynamic testbed for twenty buffer overflow attacks”
as well as Microsoft Access, Powerpoint and Word 2002. This paper will discuss the implementation
details of our scheme as well as provide a performance evaluation. The latter shows that TRUSS is able
to operate with an average overhead of about 20% to 50% which we believe is acceptable.

1 Introduction

Buffer overflow vulnerabilities have been in software products since the 1960s [5]. The core of this security
threat lies with the use of programming languages like C and C++ that traded safety for efficiency. These
programming languages do not perform checks automatically to ensure that the limits of the buffers in the
program are not violated. Furthermore, in these languages, arrays and pointers are fairly interchangeable.
This makes it even more difficult to monitor the violation of buffer limits in programs. Yet, due to legacy as
well as the continued popularity of these programming languages, the problem cannot be solved easily by
abandoning them in favor of safer ones.

Buffer overflow attacks consist of two phases. Firstly, the attacker has to inject malicious code into the
process memory space, usually the stack. This is usually a small sequence of instructions that can invoke a
shell on the system and pass control to the attacker with the privilege of the user. Secondly, the attacker has
to change the control flow to that of the start of the malicious code. An attack is successful only when both
the steps are completed [19]. Failure of any one of these two steps will result in the attack being ineffective.

There are four main categories of buffer overflow attacks. The most common way to perform a buffer
overflow attack is to overwrite a buffer with data larger than the size of the buffer. This method is known

1



as ‘stack smashing’. The aim of stack smashing is to overwrite critical control information in the process
stack. Overflowed buffers will usually cause the program to crash. However, the attacker will use carefully
crafted data to modify specific location in the memory where the return address or a function pointer resides.
This can change the execution flow of the program and make the program counter point to the start of the
malicious code.

The second type of attack targets the old base (frame) pointer. This attack makes use of stack smashing
technique as well. However, the attacker has to insert a fake stack frame into the process execution stack
with a return address pointing to the start of the malicious code. The overflowing data has to overwrite the
value of the old base pointer with the address of the fake stack frame. Hence, when the function returns,
control will be passed to the fake stack and it will perform a return again directing the flow of control to the
attack code.

The third type of attack aims to redirect function pointers in the program to point to the attack code.
When the function pointers are used in the program, it will direct the execution flow to execute the attack
code.

The last type of attack makes use of the longjmp calls. Longjmp buffers save the environment data
during a setjmp call. This data include the program counter, which points to the instruction that will be
executed next. If the attacker manages to modify the program counter to point to the start of attack code,
then control will be transferred to the attack code when a longjmp is executed [14].

In this paper, we will focus on detecting and preventing attacks that modifies function return addresses.
We introduce the Transparent RUntime Shadow Stack (TRUSS). In essence, we maintain a runtime shadow
stack of return addresses. On the execution of a procedure return, the return addresses on both the program
stack and the shadow stack are compared. If there is any discrepancy, an error is raised. This technique is
more secure than the use of terminal canary words on the stack [15]. Although this idea has been used in
other defense mechanisms such as StackShield [17], as far as we know, TRUSS is the first implementation
of this idea in a runtime binary rewriting framework.

The rest of the paper is organized as follows. In Section 2, we will survey research on similar ideas
that have been proposed or done. Section 3 will introduce the technique employed in this paper. Section 4
will discuss the implementation details. Section 5 and Section 6 will discuss security and performance tests
respectively. This will be followed by a conclusion and a discussion of future works.

2 Related Work

Much research has been done in the area of operating systems, static code analyzers, compiler extensions
and runtime detectors to detect, prevent and protect against the serious threats posed by buffer overflow
attacks. In this section, we will survey some of the currently available tools that prevent overwriting of
return addresses.

2.1 Hardware Level Security

SmashGuard [13] is a hardware solution to the protect function return addresses on the process stack against
buffer overflow attacks. This technique modifies the semantics of call and return instructions in the in-
struction set architecture. This modification enables functions to store a copy of the return addresses in
a memory segment during calls and compare with the stored return addresses upon returns. In the event
where the return address on the stack does not match with the stored copy, the processor raises a hardware
exception and terminates the execution. Hence, SmashGuard is able to provide protection to applications
without modifying the software.

2



StackGhost [8] is another scheme that takes advantage of the register windowing scheme of the SPARC
processor to perform stack checking. It requires patching the operating system.

Unlike these schemes, TRUSS works on commodity x86 processors running either Windows or Linux.

2.2 Compiler Level Security

StackShield is Linux compiler extension software implemented by Vendicator [17]. StackShield can work
with GCC compiler to provide protection for applications that are compiled with StackShield. During
compilation, StackShield inserts instructions into the program to make copies of function return addresses
and saves them in a data segment known as ‘GlobalRet Stack’. These instructions are inserted after call
instructions and before return instructions.

During execution of the program, when a function call is invoked, the function return address is stored
into ‘Global Ret Stack’ and before a return instruction is executed, the return address in the process stack
and the copy in the data segment are compared [18]. An alert is raised if the addresses do not match.
StackShield will only protect an application if the application is compiled with StackShield. Hence, it is
inevitable to have the source code of the application to apply StackShield protection. This is, however, not
possible for many legacy application where only the executables are available.

Return Address Defender (RAD) [5] is another compiler extension which provides a compile-time so-
lution to buffer overflow attacks which targets return addresses. Like StackShield, RAD adds instructions
into applications that are compiled with RAD. Protection code is inserted into the function prologues and
epilogues. Hence, when a program is executed, any function invocation will copy the return address to a
memory segment calledReturn Address Repository(RAR). During return instructions, the return address on
the process stack is compared with the stored copy. A mismatch would raise an exception.

In addition, RAD marks the RAR as read-only to ensure the credibility of the return addresses stored
in the memory segment. It also has the option of only marking the neighboring pages of the RAR as
read-only, which causes less performance degradation compared to the previous method [11] However, like
StackShield, RAD requires the source code of the program to provide protection. TRUSS, on the other hand,
does not require the source code making it more amenable for many applications that are either distributed
only in binary or use dynamically loaded libraries extensively.

2.3 Binary Level Security

Binary rewriting defense is a binary level solution to foil buffer overflow attacks. This technique does not
require the source code of the application. It protects function return addresses in application by adding
protection code at every function invocation in the binaries statically without disturbing the procedure’s exe-
cution flow. This technique requires tools to analyze the binary to identify each instruction. Binary rewriting
method uses disassemblers to accurately trace the location of function invocations in the binary [14].

In order to store copies of the return addresses, binary rewriting method employs similar technique
used in RAD. Function return addresses are stored in a repository upon function calls and a comparison
is done before return instructions. However, unlike previously mentioned techniques, Binary rewriting
method inserts additional protection code only for ‘interesting functions’. These are functions that contain
instructions to allocate and deallocate stack frames for local variables. Thus, functions do not contain any
local variables are considered safe functions as stack based buffer overflow cannot succeed in functions
without local variables. However, static analysis of binaries cannot provide protection for dynamically
loaded libraries and Position Independent Code. Moreover, static analysis of binaries using disassemblers is
not 100% accurate and it will still be possible to miss protection on vulnerable functions.

Libverify [2] is a proposed solution that works on binaries at runtime to provide protection against buffer
overflow attacks that targets function return addresses and it works on Linux operating system. It works as

3



a dynamically loadable library that is activated by specifying it in theLD_PRELOAD environment variable.
By doing so, the library is loaded before the program begins execution. The_init function in Libverify
instruments the process such that every function invocation and return instruction will call the checking
functions in the library.

The instrumentation process in Libverify copies every function to the heap memory and inserts a jump
to an entry wrapper function. This entry wrapper function stores a copy of the return address in a canary
stack, which resides in the heap memory and then jumps back to the original function. Likewise, the return
instructions are overwritten with an exit wrapper function. This exit wrapper function verifies the return
address in the process stack with the value in the canary stack. Upon a match, the process will execute the
return instruction and continue with its execution flow. Any mismatch will create a syslog entry, output an
error message and terminate [2]. Libverify provides dynamic protection to executables. Its ability to work
on binaries without requiring the source code is a major advantage. However, this software has not been
released.

The technique discussed in this paper is similar to Libverify in the sense that it also provides dynamic
protection against buffer overflow attack that targets function return addresses at runtime. However, Lib-
verify performsload-timerewriting that copies code to the heap only once at initialization, while checking
is done at runtime. During initialization, all procedure linkages have to be fixed. It seems doubtful if this
will work with dynamically loaded libraries. Furthermore, the performance evaluation of Libverify has only
been done on small programs [2]. It is unclear how the implementation scales with larger applications.

Another runtime binary rewriting technique that is close to TRUSS isprogram shepherding[9]. It is
also implemented on the DynamoRIO framework. However, program shepherding performs runtime checks
against user specified security policies. To prevent return address overwrites, it merely checks that the
return is to a call site. Program shepherding has since been commercialized by Determina [7]. The public
literature of Determina do not indicate that they have implemented any mechanism similar to the shadow
stack of TRUSS. Of course, we do not have any information about the internals of their products.

3 Overview of Technique

The protection afforded by TRUSS essentially consists of return address verification before use. Although
this is a straightforward idea, the major challenge is to provide an efficient method to perform binary instru-
mentation, inserting the minimal amount of checking instructions thereby bringing down the overhead. In
TRUSS, we chose to use DynamoRIO as the implementation platform.

3.1 DynamoRIO

DynamoRIO is a runtime code manipulation tool that simultaneously supports code transformations in an
application and executes the application. Its operating procedure is illustrated in Fig. 1. DynamoRIO main-
tains a code cache where it stores a copy of the application instructions. These instructions are stored in
units of basic blocks such that each basic block ends with a control transfer instruction. The basic blocks in
the code cache are used for execution. Hence, DynamoRIO constantly transfers control between instrumen-
tation of basic blocks from the application code and execution of the basic blocks.

DynamoRIO includes an important optimization technique to improve its performance. It contains a
trace cache that stores a copy of sequences of basic blocks known astraces. These are basic blocks that
are executed more than a default number of times. The control flow instructions are replaced with popular
targets of indirect branches inlined into the traces and include a check to verify the target of the branch
instruction [3].

This tool incorporates a set of APIs that allows basic blocks in the cache and the traces in the trace cache

4



Basic block builder Trace selector

Dispatch

BASIC BLOCK CACHE
Non-control-flow

instructions Indirect branch lookup

TRACE CACHE
Non-control-flow

instructions
Indirect branch
stays on trace?

context switch

START

Figure 1: Operations of DynamoRIO [3].

to be analyzed and manipulated before they are executed. Insertion of additional instructions into basic
blocks and traces are also supported. DynamoRIO also contains APIs that allows a user to build a client
program that can be attached to DynamoRIO so as to work on the application. All these features come at a
cost of zero to thirty percent time and memory overhead on both Windows and Linux [3].

4 Implementation of TRUSS

TRUSS is implemented as a client program in DynamoRIO. It is converted into a dynamically loadable
library that is used when the exported API functions of DynamoRIO are invoked.

4.1 Design

TRUSS uses thedynamorio_basic_block function to interrupt DynamoRIO after it creates a basic block
and before it executes that block. It then scans through every instruction to identify all call and return
instructions. For call instructions, TRUSS inserts instructions that, after the call, will retrieve the function
return address from the process stack and store it into a memory segment maintained by TRUSS. This is
theshadow_stack and is dynamically allocated. TRUSS also stores the address of the stack pointer at the
return address intoshadow_stack. Both the stack pointer address and the return address are stored in the
same memory segment for efficiency. When return instructions are encountered, TRUSS inserts instructions
before the return to retrieve the return address that will at the top of the process stack at this point. It also
retrieves the return address stored from theshadow_stack and performs a comparison. The two addresses
should match if there was no illegal return address modification.

In some cases, the two addresses will not match although no return address modification occurred. The
reason for this behavior is that there are several scenarios in which the number of call instructions and return
instructions will not match up. Such a situation may arise during dynamic loading, when different compiler
optimizations are applied, or insetjmp/longjmp. When such a case occurs, TRUSS will use the stack

5



Buffer Overflow Attacks TRUSS (Linux) TRUSS (Windows)
Overflow in stack all the way to return address DETECTED DETECTED
Overflow in heap/BSS/data all the way to return addressDETECTED DETECTED
Overflow of pointer on heap/BSS/data DETECTED —
and then point to target (not for Win32)

Table 1: TRUSS Security Performance

pointer in the process stack to scan theshadow_stack for a match. Upon a match, the two corresponding
return addresses will be compared. Any mismatch will then signal an error and terminate the application. It
is noteworthy that neither StackShield nor Libverify implements this.

Suppose, an attacker attempts to overwrite a function return address with the start address of a malicious
code, he would have to inject the shellcode into a function. When this function is called, TRUSS will store
a copy of the function return address and a copy of the corresponding address of the stack pointer in the
shadow_stack. During the function execution, the return address in the process stack will be modified.
In a native program, such a scenario will cause the program counter to be set to the return address in the
process stack and allow execution of the malicious code when the function executes a return instruction. But
with TRUSS in place, before a return instruction is executed, the return addresses in the process stack and
theshadow_stack will be compared and in a case where the stack pointer addresses match and the return
addresses do not match, an error will be signaled and the application will be terminated. In this way, TRUSS
protects every function return address in an application.

4.2 Optimizations

Protecting every function return address in the application can incur much overhead. Hence, there has to
be some way to safely omit protection code for some function calls. TRUSS has implemented two such
techniques. First, we observed that in dynamically loaded routines, in order to get the address of its data
(which is some known constant displacement away), the procedure must obtain its program counter. The
easiest way to do this is to perform a call to the next instruction which would result in the program counter
being deposited on the stack. Such calls do not pose any kind of vulnerability, as there are no instructions in
between that can modify the return address.

Second, TRUSS can take advantage of DynamoRIO’s traces to cut down on the protection code. Traces
are created when a sequence of basic blocks are executed for a certain number of times. This means that
the protection code in basic blocks with call instruction or return instruction would have been successfully
executed without detecting any return address modification. Hence, it would be safe to remove the protection
code at the return instruction from the trace. However, the TRUSS code at the call instruction cannot be
safely removed as a basic block can exit at various instructions but the trace will contain only the most
frequently taken path. Consequently, protection code at call instruction will be executed throughout the
application and protection code at return instruction in the traces will contain only one additional instruction
to update the index of theshadow_stack.

4.3 Multi-threaded Applications

TRUSS also supports multithreaded applications. DynamoRIO provides APIs that allows monitoring of
individual threads during application execution. Thread-specificshadow_stacks must be used. In this way,
each thread can be executed with TRUSS in place and avoids any complications due to thread synchroniza-
tion.

6



Benchmarks/input Native DynamoRIO TRUSS TRUSS Overhead
gzip/source 32.798 34.209 35.848 13%
gzip/log 14.997 15.662 16.295 6%
gzip/graphic 37.370 40.910 46.907 27%
gzip/random 30.261 32.613 38.061 26%
gzip/program 60.856 62.604 65.577 8%
vpr/1 90.059 97.731 99.590 10%
vpr/2 100.330 102.904 106.161 6%
mcf/ref 193.586 192.410 192.463 0%
crafty/ref 112.484 152.389 174.754 55%
bzip2/source 53.655 57.073 64.389 19%
bzip2/graphic 69.253 73.634 83.101 20%
bzip2/program 54.420 57.269 65.093 20%
twolf/ref 313.160 342.359 365.133 17%
parser/ref 210.628 236.838 270.671 28%

Average 18.21%

Table 2: Performance in Linux with SPECINT 2000 programs (in sec).eflag not saved.

5 Security Evaluation

We have tested TRUSS ’s ability to detect function return address modification attacks with John Wilander’s
testbed of twenty buffer overflow attacks [18]. The testbed of attacks provide three types of return address
attacks. Table 1 shows how TRUSS performs against these attacks. With the testbed of attacks, TRUSS
successfully detects all buffer overflow attacks that target return addresses in Linux. In Windows, TRUSS is
successful in all but one of the cases because the implementation of this particular attack does not apply in
Windows.

6 Performance Evaluation

This section describes the performance tests we used to evaluate the performance of TRUSS. We are par-
ticularly interested in the overhead involved. A subset of SPECINT 2000 programs on both Windows and
Linux. These were executed on a Dell Optiplex GX280 Pentium 4 530 running at 3.0 GHz system with
1 GB RAM. The operating systems used are Microsoft Windows XP Professional SP2 and Linux Fedora
Core 3. We also ran three Microsoft Office benchmarks from the BAPco SYSmark 2004 SE [1] on a 3 GHz
Pentium D machine with 2 GByte of memory. The benchmarks were Microsoft Access 2002, Powerpoint
2002, and Word 2002. All times reported are in seconds and were taken using the wallclock time function.

Table 2 shows the results for TRUSS running under Linux. The average overhead over the 14 benchmark-
input pairs is 18.21%. On Windows (Table 3, it was slightly higher at 24.82%. However, we found that the
vpr andtwolf produced incorrect results under Windows. We found out that this was because we had not
saved the x86eflags. When we fixed this problem for Windows, the overhead doubled to 53.36%, as shown
in Table 4. The performance ofcrafty andparser was particularly poor. Re-running the benchmarks on
the Pentium D machine produced no significant changes. Upon inspecting the code, we realize that the most
time consuming portion ofcrafty’s computation is in a recursive alpha/beta negamax search.parser, on
the other hand, does not seem to have well-defined regions of code that are executed intensively. This may
have resulted in poor trace building.parser also have an unusually high number of procedure calls. The

7



Benchmarks/input Native DynamoRIO TRUSS TRUSS Overhead
gzip/source 34.339 35.356 39.478 15%
gzip/log 15.751 16.227 17.148 6%
gzip/graphic 37.832 40.893 48.451 26%
gzip/random 31.678 33.552 40.425 29%
gzip/program 64.810 66.994 69.587 10%
mcf/ref 206.675 210.949 220.457 6%
crafty/ref 126.088 197.543 231.111 83%
bzip2/source 69.834 73.127 82.874 19%
bzip2/graphic 88.471 93.127 106.550 22%
bzip2/program 71.843 75.149 84.570 20%
parser/ref 223.763 256.671 306.803 37%

Average 24.82%

Table 3: Performance in Windows with SPECINT 2000 programs (in sec)withouteflag saving.vpr and
twolf produced incorrect results.

Benchmarks/input Native DynamoRIO TRUSS TRUSS Overhead
gzip/source 34.339 35.356 43.875 20%
gzip/log 15.751 16.227 18.966 18%
gzip/graphic 37.832 40.893 63.045 65%
gzip/random 31.678 33.552 46.476 43%
gzip/program 64.810 66.994 78.524 21%
vpr/1 89.574 96.301 138.524 55%
vpr/2 104.743 119.309 152.414 46%
mcf/ref 206.675 210.949 266.900 29%
crafty/ref 126.088 197.543 327.529 159%
bzip2/source 69.834 73.127 101.505 46%
bzip2/graphic 88.471 93.127 126.945 41%
bzip2/program 71.843 75.149 103.795 43%
twolf/ref 339.353 376.145 455.581 34%
parser/ref 228.293 277.290 518.801 127%

Average 53.36%

Table 4: Performance in Windows with SPECINT 2000 programs (in sec) witheflag saving.

Benchmarks/input Native DynamoRIO TRUSS TRUSS Overhead
Access 2002 241.45 370.52 373.88 32%
Powerpoint 2002 353.78 370.34 391.73 11%
Word 2002 260.35 279.44 289.99 11%

Average 18%

Table 5: Performance on BAPco Microsoft Office Productivity Benchmarks (in sec)

8



Benchmarks StackShield Overhead
gzip 14%
vpr 51%
mcf 0%
crafty crashed
bzip2 12%
twolf 7%
parser 49%

Average 22%

Table 6: Overhead of StackShield on Linux SPECINT benchmarks.

ratio of call and return instructions executed to that of the total number of instructions executed is 0.0456.
While the average of the other 13 benchmarks were 0.0135 with the highest being 0.0218 (bzip2/source).

Table 5 reports the performance of TRUSS on the BAPco Microsoft Access, Powerpoint and Word
benchmarks. Unlike the SPEC benchmarks, these are multithreaded, event-driven and interactive in nature.
An average overhead of 18% was achieved. The worst of the three was Access 2002. But here it is the
overhead of DynamoRIO that is causing the problem.

As a comparison, Table 6 shows the overhead of StackShield (the compiler approach) on the SPECINT
benchmarks running in Linux. One of the benchmarks,crafty crashed. The average overhead was 22%. In
summary, while there is clearly room for improvement, we deem the overhead of TRUSS to be acceptable.

7 Conclusion

In this paper, we have presented a runtime solution for preventing buffer overflow attacks that target function
return addresses TRUSS was implemented on top of DynamoRIO, a dynamic binary rewriting framework.
Working with binary executables, TRUSS is able to protect code running on both Linux and Windows with-
out requiring special hardware, access to the source code or patches to the operating systems. TRUSS passed
a suite of stack smashing benchmarks. We have also tested it using the SPEC integer and three Microsoft
Office application benchmarks. The former are single threaded, compute intensive, batch programs. The
latter are multithreaded, event driven, interactive programs.

One of the concern about any runtime scheme is the overhead involved. Our performance evaluation
of TRUSS has shown that its overhead is dependent on the application and operating systems but within a
range we deem acceptable to most users.

No single method of security is omnipotent. TRUSS, for example, is not effective against means of
hijacking the program counter that do not rely on using return addresses such as program linkage table and
global offset table overwrite attacks [4]. As future work, we would like to examine these and extend the
TRUSS framework to incorporate other forms of defenses.

References

[1] Business Applications Performance Corporation. SYSmark 2004 SE.
http://www.bapco.com/products/sysmark2004se.

[2] A. Baratloo, T. Tsai, and N. Singh. “Transparent run-time defense against stack smashing attacks.” In
Proceedings of the USENIX Annual Technical Conference, Jun 2000.

9



[3] D. L. Bruening.Efficient, Transparent, and Comprehensive Runtime Code Manipulation.PhD thesis,
M.I.T. (http://www.cag.lcs.mit.edu/dynamorio/), Sep 2004.

[4] c0ntex. How to hijack the Global Offset Table with pointers for root shells.http://www.open-
security.org/texts/6

[5] T. Chiueh, and F. H. Hsu. “RAD: A compile-time solution to buffer overflow attacks.” InProceedings
of the 21st International Conference on Distributed Computing Systems, pp. 409-420, Apr 2001.

[6] C. Cifuentes, T. Waddington, and M. Van Emmerik, “Computer Security Analysis through Decompi-
lation and High-Level Debugging.” InProceedings of the Workshop on Decompilation Techniques, pp.
375-380, Oct 2001.

[7] Determina Inc. http://www.determina.com/

[8] M. Frantzen and M. Shuey, “StackGhost: Hardware Facilitated Stack Protection.” InProceedings of
the 10th USENIX Security Symposium, pp. 55-66. 2001.

[9] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure Execution Via Program Shepherding”. In
Proceedings of the 11th USENIX Security Symposium, pp. 191-206. 2002.

[10] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi,“Security as a New Dimension in Em-
bedded System Design.” InProceedings of the 41st Design Automation Conference, Jun 2004.

[11] B. A. Kuperman, C. E. Brodley, H. Ozdoganoglu, T. N. Vijaykumar, and A. Jalote, “Detection and pre-
vention of stack buffer overflow attacks.”Communications of the ACM, 48(11), pp. 50-56, November
2005.

[12] D. Moore, C. Shannon, and J. Brown. “Code-Red: a Case Study on the Spread and Victims of an In-
ternet Worm.” InProceedings of the Second Internet Measurement Workshop, pp. 273–284, November
2002.

[13] H. Ozdoganoglu, T. N. Vijaykumar, C. E. Brodley, A. Jalote, and B. A. Kuperman. “SmashGuard:
A Hardware Solution to Prevent Security Attacks on the Function Return Address.”Technical Report
TR-ECE 03-13, Purdue University, February 2004.

[14] M. Prasad and T. Chiueh. “A Binary Rewriting Defense Against Stack-based Buffer Overflow Attacks.”
In Proceedings of the USENIX Annual Technical Conference, pp. 211–224, June 2003.

[15] G. Richarte, “Four different tricks to bypass StackShield and StackGuard protection.” Tech. rep., Core
Security Technologies, Apr. 2002.

[16] Standard Performance Evaluation Corporation. SPEC CPU2000 benchmark suite.
http://www.spec.org/osg/cpu2000/.

[17] StackShield: A “stack smashing” technique protection tool for Linux.
http://www.angelfire.com/sk/stackshield/.

[18] J. Wilander, and M. Kamkar. “A Comparison of Publicly Available Tools for Dynamic Buffer Overflow
Prevention.” InProceedings of the 10th Network and Distributed System Security Symposium, pp. 149-
162, Feb 2003.

10



[19] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, “Architecture Support for Defending Against Buffer
Overflow Attacks,” InProceedings of the Workshop on Evaluating and Architecting Systems for De-
pendability. Oct 2002.

[20] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for security.Technical Report
UILU-ENG-03-2207 (CRHC-03-03), Center for Reliable and High-Performance Computing, Univer-
sity of Illinois at Urbana-Champaign, Urbana-Champaign, IL, May 2003.

11


